DOI
10.1016/j.jds.2022.12.014
First Page
1747
Last Page
1755
Abstract
Abstract Background/purpose The success of transcrestal sinus floor elevation (TSFE) is primarily reliant upon the experience of the surgeon owing to the limited operative visibility. To evaluate the accuracy associated with the use of a dynamic navigation system when conducting posterior maxilla implant surgery with TSFE. Materials and methods Twenty-eight implants were placed in 28 patients requiring implantation in the posterior maxilla via a TSFE approach. The drills were used to access the planned position (within 1 mm of the bottom of the maxillary sinus floor) under dynamic navigation system. TSFE was then accomplished using osteotomes and a piezoelectric device. Lastly, the implant was inserted under the dynamic navigation. Three effective deviations between planned and actual implant placement were then measured including angular deviation (AD, degrees), entry point horizontal deviation (EPHD, mm), and apical point horizontal deviation (APHD, mm). Results The AD, EPHD, and APHD between the planned and actual implant placement were 3.656 ± 1.665°, 1.073 ± 0.686 mm, and 1.086 ± 0.667 mm, respectively. Premolar site AD values were less than those for molar sites ( P = 0.004). No significant differences in these outcomes were observed in different surgeons. Obvious sinus perforation was not detected by immediate postoperative cone beam computed tomography imaging. Conclusion The accuracy associated with using a dynamic navigation system when conducting posterior maxilla implant surgery via a TSFE approach using piezoelectric devices was comparable. This technique thus achieved appropriate interventional precision and safety while decreasing the morbidity associated with the TSFE approach.
Recommended Citation
Sun, Feng; wu, binzhang; and ma, feifei
(2023)
"Analysis of the accuracy of a dynamic navigation system when performing dental implant surgery with transcrestal sinus floor elevation: A pilot study,"
Journal of Dental Sciences: Vol. 18:
Iss.
4, Article 81.
DOI: 10.1016/j.jds.2022.12.014
Available at:
https://jds.ads.org.tw/journal/vol18/iss4/81